We proposed an improved simulated annealing algorithm with neighbor function based on self - optimization of scale parameter . furthermore incorporating disaster - modification and the improved annealing into genetic algorithm , an improved genetic - annealing algorithm is proposed . in order to solve the deceptive minimum problem , an improved evolutionary strategy combined with similarity detection and improved mutation operator 提出了鄰域尺度函數(shù)自尋優(yōu)的模擬褪火算法,結合遺傳算法,引入災變算子,提出了改進遺傳模擬褪火算法;為了解決尋優(yōu)過程中的最小欺騙問題,我們提出了相似性檢測,結合改進的適應值無關變異算子,提出了基于相似性檢測和適應值無關變異算子的進化策略算法。
2 . on the base of detailedly analysing the fourier neural networks , we find this neural networks have the characteristic which can transform the nonlinear mapping into linear mapping . so , we improve the original learning algorithm based on nonlinear optimization and propose a novel learning algorithm based on linear optimization ( this dissertation adopts the least squares method ) . the novel learning algorithm highly improve convergence speed and avoid local minima problem . because of adopting the least squares method , when the training output samples were affected by white noise , this algorithm have good denoising function 在詳細分析已有的傅立葉神經網絡的基礎上,發(fā)現(xiàn)傅立葉神經網絡具有將非線性映射轉化成線性映射的特點,基于這個特點,對該神經網絡原有的基于非線性優(yōu)化的學習算法進行了改進,提出了基于線性優(yōu)化方法(本文采用最小二乘法)的學習算法,大大提高了神經網絡的收斂速度并避免了局部極小問題;由于采用了最小二乘方法,當用來訓練傅立葉神經網絡的訓練輸出樣本受白噪聲影響時,本學習算法具有良好的降低噪聲影響的功能。